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Abstract. Proportional tuition fees assessment is an optimization process to find 

a compromise point between student willingness to pay and institution income. 
Using a genetic algorithm to find optimal solutions requires effective 
chromosome representations, parameters, and operator genetic to obtain efficient 

search. This paper proposes a new chromosome representation and also finding 
efficient genetic parameters to solve the proportional tuition fees assessment 
problem. The results of applying the new chromosome representation are 

compared with another chromosome representation in the previous study. The 

evaluations show that the proposed chromosome representation obtains better 
results than the other in both execution time required and the quality of the 

solutions. 

 

 

1 Introduction  
Proportional tuition fees or in the Indonesian language called Uang Kuliah Tunggal 

(UKT) assessment is an optimization process to find a compromise point between 

student willingness to pay and institution income. Institution income cannot be less than 

its minimum operational funds.  Ministerial regulation about UKT (Peraturan Menteri 

Riset, Teknologi, Dan Pendidikan Tinggi Republik Indonesia that is abbreviated as 

permenristekdikti) number 22 year 2015 ruled institutions to give category I and II for 

minimum 5% out of total students in each study program [1]. Category I and II are the 

two cheapest tuition fees. Besides student willingness to pay, the assessment result 

cannot contain collisions of the financial ability range in each category. Those things 

make proportional tuition fees assessment problem more complicated. 

 

The proportional tuition fees assessment problem is indeed a multi-objective 

optimization problem [2]. An algorithm that is often used to solve multi-objective 

problems is Non-dominated Sort Genetic Algorithm II (NSGA-II) [3]. Although [2] has 

produced a feasible solution, the modeling of NSGA-II still requires considerable time 

in finding a feasible solution. As in [4], shorter chromosome representation is expected 

to reduce the processing time of NSGA-II to solve multi-objective problems of 

proportional tuition fees assessment. 

Many studies have proven that optimization problems can be solved more efficiently 

by an effective chromosome. A newly defined chromosome solved flexible job sob 

scheduling problems (FJSP) with less processing time and more quality of solutions 
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[4]. Genetic algorithm with chromosome representation of real numbers (RCGA) is 

proven outperform other methods on solving FJSP, despite using simple genetic 

operators [5], [6]. RCGA was also showing excellent performance in solving knapsack 

problems [7]. A permutation chromosome representation employed to solve multiple 

sequences of alignment of bioinformatics [8]. NSGA-II with a new problem-specific 

chromosome makes significant performance improvement in oil refinery scheduling [9] 

and production-distribution optimization [10]. Better performance also produced by 

problem-specific chromosome on the base station placement in cellular networks [11]. 

Variable-length chromosome outperforms fixed-length in satellite constellations [12] 

and road traffic coordination as a multipath optimization problem [13]. A dual 

chromosome is better than a single chromosome in the optimization of resource 

allocation in container-based clouds [14]. In this paper, we proposed a shorter problem-

specific chromosome than [2], which faster and produces a better quality of the 

solutions. 

This paper is organized as follows: Section 1: explain the background of our study. 

Section 2 introduces the problem formulation. Section 3 describes a chromosome 

representation described in [2] and our proposed chromosome representation along with 

the chromosome specific-initialization method. Section 4 compares the results of the 

chromosome representations using the same dataset as in [2]. Finally, Section 5 

summarizes and analyses the strengths and weaknesses of our representation. 

 

2 Problem Formulation 

 
Notations that used on proportional tuition fees assessment problems are defined as in 

Table 1.  

Table 1 List of tuition fees assessment notation 

 

Symbol Meaning 

k = 1,2,3,4,5,6 Index of UKT category 

m = 1,2,… M Index students 

s = 1,2,3,…S Index of the study programs 

Sm The study program of student m 

Um The tuition fee of student m 

Uk The tuition fee of category k 

Em Financial ability of student m 

H Minimum operational funds 

Ns Number of students at study program s 

Km= {1,2,3,4,5,6} UKT category for student m 

NKks  Number of students at study program s and 

category k  

 

The fitness (objective) function of the multi-objective optimization of the tuition fees 

assessment can be seen in equations (1) and (2). Equation (1) is a fitness function for 

the distance between the tuition fee and the financial ability of students (willingness to 

pay). Equation (2) is a fitness function that represents the total amount of student’s 

tuition fees or can be referred to as institution income.  

max  𝑓1 = −
∑ |𝑈𝑚−𝐸𝑚|𝑀

𝑚=1

𝑀
  (1) 

𝑚𝑎𝑥 𝑓2 = ∑ 𝑈𝑚
𝑀
𝑚=1  (2) 
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In addition to the fitness function, there are also optimization constraints. The first 

constraint is to ensure the total tuition fees of students are not less than the minimum 

institution’s operational funds. The first constraint can be formulated in formula (3). 

The number of students in each tuition category is formulated in equation (4). The 

second and third constraints ensure that category I and category II not less than 5% of 

the total number of students accepted at each study program. The second and third 

constraints are entered into limits based on the Regulation of the Minister of Research, 

Technology, and Higher Education of the Republic of Indonesia 

(PERMERISTEKDIKTI) number 22 year 2015. The second and third constraints can 

be seen in formula (5) and (6), respectively. Formula (7) ensures that the maximum 

financial ability of students (Em) with category k in the study program s must be greater 

than the minimum financial ability of students (Em) with category k-1 (the tuition 

category below). From defining the fitness function (1) and (2), and the constraint 

function (3), (5) - (7) it can be formulated as a whole optimization function can be seen 

in formula (8). 
 

𝑔 = ∑ 𝑈𝑚
𝑀
𝑚=1 − 𝐻 > 0 (3) 

𝑁𝐾𝑘𝑠 = ∑ ((𝐾𝑚 = 𝑘)𝑀

𝑚=1

∗ (𝑆𝑚 = 𝑠)) (4) 

ℎ = 𝑁𝐾1𝑠 − (5% ∗ 𝑁𝑠) ≥ 0   (5) 

𝑖 = 𝑁𝐾2𝑠 − (5% ∗ 𝑁𝑠) ≥ 0   (6) 

𝑗 = 𝑀𝑖𝑛𝐸𝑘𝑠 − 𝑀𝑎𝑥𝐸𝑘−1𝑠 > 0   (7) 

𝑚𝑎𝑥 𝐹 = (𝑓1, 𝑓2)𝑇

𝑢𝑛𝑡𝑢𝑘 𝑔 > 0
ℎ ≥ 0
𝑖 ≥ 0
𝑗 > 0

   (8) 

 

3    Chromosome Representation and Initialization Method 

 

3.1 Old Chromosome Representation (KI) 

 

Old chromosome as in [2] represented as M (number of students) array of integer. 

Gen represents students, and the value of gen represents the tuition fees category. 

Chromosome representation for M students is shown in Fig. 2. 

 

Fig. 1 Old chromosome representation (K1) for M students 

3.2 Proposed Chromosome Representation (K2) 

 

The proposed chromosome representation (further called K2) uses real values 

representation. The genes on the chromosomes represent the upper limit of the financial 

ability of students, as can be seen in Fig. 2. The chromosome representation for one 



 
 
 
 
294 JITeCS Volume 4, Number 3, Desember 2019, pp 291-298 

 

 

p-ISSN: 2540-9433; e-ISSN: 2540-9824 

study program and the number of UKT categories is five can be seen in Fig. 2. So for 

the assessment of student’s UKT in a faculty with three study programs, the 

chromosome representation can be seen in Fig. 3.  

 

 

Fig. 2 Illustration of proposed chromosome (K2) 

 

Fig. 3 Proposed chromosome representation (K2) for 3 study programs 

3.3 Initialization Method Of Proposed Chromosome Representation (K2) 

 

A special initialization method is needed for K2. This initialization method utilizes 

Pseudo-Random and it is named NCPR-Seq (Normalized Cumulative Pseudo-Random 

Sequence) initialization. NCPR-Seq steps can be seen in Error! Reference source not 

found.. NCPR-Seq initialization method for one study program is done by generating 

a number of K random numbers (Pseudo Random which can be abbreviated as PR). 

Then the cumulative series of K numbers are formed based on the K random numbers 

that have been generated. The cumulative series formed is then normalized. The 

normalization process is carried out by dividing the value of the cumulative series by 

its highest value (the total value of the random K number). The final process is to 

multiply the normalized cumulative series with U6s, which is the highest tuition fee 

price in the study program. The NCPR-Seq used for forming chromosomes is only a 

number of K-1. The NCPR-Seq generation process is repeated in S study programs 

form a complete chromosome. So the length of the chromosome is S * (K-1). 

4    Result and Evaluation 

 
The proposed chromosome representation (K2) will compare to the chromosome 

representation in the study [2], which is further called K1. Chromosome representations 

comparison on population size are performed using a maximum of 3000 iterations, and 

one-cut-point crossover and simple-random mutation with crossover rate (cr) = 0.5 and 

mutation rate (mr) = 0.5. Test results for popSize 40 to 200 shown at Error! Not a valid 

bookmark self-reference. shows that K1 does not produce a feasible solution up to 

popSize 200. It also shows that K2 has a faster time, even though it only has a small 

difference. The average value of f1 and f2 from K2 is better than K1. Because the 

average of f1 and f2 both K1 and K2 still tends to increase, to get the best popSize 

value, this test is repeated for popSize 400 to 2000 with the addition of 400. 
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Table 2.  

Error! Not a valid bookmark self-reference. shows that K1 does not produce a 

feasible solution up to popSize 200. It also shows that K2 has a faster time, even though 

it only has a small difference. The average value of f1 and f2 from K2 is better than K1. 

Because the average of f1 and f2 both K1 and K2 still tends to increase, to get the best 

popSize value, this test is repeated for popSize 400 to 2000 with the addition of 400. 

Table 2 Result comparison between K1 and K2 when using popSize 40-200 

popSize 
FeaSol Time (s) Avg f1 Avg f2 

K1 K2 K1 K2 K1 K2 K1 K2 

40 0 40 3.701 3.720 -4.695 -2.375 550.781 663.038 

80 0 80 8.094 7.648 -4.329 -2.364 591.341 665.274 

120 0 120 12.254 11.790 -4 -2.364 617.745 665.402 

160 0 160 18.519 17.107 -3.891 -2.364 625.123 664.700 

200 0 200 24.137 23.483 -3.731 -2.375 637.547 667.403 

 

Table 3 Result Comparison between K1 and K2 when using popSize 400-2000 

popSize 
FeaSol Time (s) Avg f1 Avg f2 

K1 K2 K1 K2 K1 K2 K1 K2 

400 0 400 64.332 69.036 -3.336 -2.384 665.256 670.685 

800 0 800 234.380 258.489 -3.022 -2.402 696.249 674.196 

1200 0 1200 546.551 614.489 -2.916 -2.399 710.791 673.958 

1600 0 1600 959.785 1326.240 -2.843 -2.398 722.587 674.402 

2000 0 2000 1537.026 2039.133 -2.788 -2.408 726.803 676.107 

 

Table 3 indicates that K1 still does not produce a feasible solution. Likewise, K2 still 

produces feasible solutions as much as popSize. As is well known that the length of the 

K2 chromosome is shorter than K1. The reason for K2 having a longer execution time, 

albeit with shorter chromosomes, is because the mapping process between students and 

their tuition categories (Um) is based on the limits of the financial ability of students 

(Em) of each category implicit in the chromosome configuration. The mapping occurs 

before the fitness and the constraint calculation process occurs. As for K1, the 

chromosome configuration has stated the UKT category of students (Km). 

Table 3 shows the tendency of the increasing mean of f2 and decreasing of the mean of 

f1 as popSize increases. In general, the higher the popSize, the more variations it will 

produce in one iteration. However, the greater popSize will also add a significant 
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execution time. So it can be concluded that the value of popSize is good and will be 

used for further testing is 200.   

It can be seen in Table 4, that the mean of f1 and f2 tends to increase of the maximum 

generation (maxGen) 10 to 100, then decrease for the remaining maxGen values. 

Besides that, we can see that the NSGA-II obtained a number of popSize feasible 

solutions even when maxGen = 9. So it can be concluded that the efficient maxGen 

value is 100. 

Table 4 Test result of K2 in the different maximum generation (MaxGen) 

maxGen Avg f1 Avg f2 Avg time Avg 

FeaSol 

3000 -2.370 667.421 17.599 200 

2000 -2.375 667.659 11.872 200 

1000 -2.370 666.920 5.881 200 

800 -2.370 666.938 5.485 200 

600 -2.370 667.381 3.608 200 

400 -2.364 666.220 2.522 200 

200 -2.364 666.322 1.603 200 

100 -2.364 667.210 1.053 200 

80 -2.364 666.669 0.936 200 

60 -2.364 666.293 0.834 200 

40 -2.364 665.174 0.710 200 

20 -2.370 665.430 0.595 200 

10 -2.381 665.783 0.548 200 

8 -2.375 662.871 0.534 196.8 

6 -2.381 664.127 0.518 181.15 

4 -2.381 662.993 0.491 91.7 

2 -2.381 662.103 0.483 45.9 

 

5    Conclusion 

 
The test results show that the modified NSGA-II has succeeded in optimizing the problem 

of determining UKT. The best parameters for multi-objective optimization in determining 

UKT are the number of population (popSize) 200 and the maximum iteration = 100. The 

modified NSGA-II produced a 200 solution (the same as popSize). These solutions are vary. 

It starting from solutions that tend to prioritize objectives from the student's point of view 

(fitness 1 has the highest value). Until solutions that are very beneficial to the institution 
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(fitness 2 has the highest value). With the variety of solutions produced, the modified 

NSGA-II can assist decision-makers in choosing UKT determination solutions. 

Based on the test results, it is known that the most effective chromosome representation is 

the second chromosome representation (K2). It is happening because K2 achieves the best 

fitness value with shorter execution time. K1 is very difficult to find a feasible solution 

because of the vastness of the search universe or in other words, too many variations of the 

resulting combination. Whereas K2 further limits the search area or narrows the resulting 

combination by reducing the number of genes from chromosomes. However, the variation 

in the value of one gene is still continuous (not discrete). 

 

In order to permit cross referencing within LNCS-Online, and eventually between di erent 

publishers and their online databases, LNCS will, from now on, be standardizing the format 

of the references. This new feature will increase the visibility of publications and facilitate 

academic research considerably. Please base your references on the examples below. 

References that don’t adhere to this style will be reformatted by Springer. You should 

therefore check your references thoroughly when you receive the final pdf of your paper. 

The reference section must be complete. You may not omit references. Instructions as to 

where to find a fuller version of the references are not permissible.  
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